Skip to main content

Training Hadoop Developer With Spark

HADOOP DEVELOPER WITH SPARK
www.purnamaacademy.com , Hotline (Call/SMS/WA) :  0838-0838-0001 , Jakarta , Bandung, Bali

Syllabus Overview
Saat ini Industri banyak menggunakan Hadoop secara ekstensif untuk menganalisis kumpulan data yang mereka miliki ,  alasannya adalah bahwa framework Hadoop bekerja atas dasar pada model pemrograman sederhana (MapReduce) dan memungkinkan solusi komputasi yang terukur, fleksibel, toleransi kesalahan dan hemat biaya. Disini, yang menjadi perhatian utama adalah menjaga kecepatan dalam mengolah dataset besar dalam hal waktu tunggu antara Query  dan waktu tunggu untuk menjalankan program.
Spark diperkenalkan oleh Apache Software Foundation untuk mempercepat proses komputasi komputasi Hadoop
Tidak seperti yang kebanyakan orang kira bahwa Spark bukanlah versi modifikasi dari Hadoop dan sebenarnya juga tidak bergantung pada Hadoop karena memiliki manajemen cluster sendiri. Hadoop hanyalah salah bagian dalam implementasi Spark.
Spark menggunakan Hadoop dengan dua cara – Pertama adalah penyimpanan dan yang kedua adalah pemrosesan. Namun karena Spark memiliki perhitungan manajemen cluster sendiri maka Spark menggunakan Hadoop lebih kepada untuk tujuan penyimpanan saja.

Class Type           : Training
Duration              : 4 Days (09.00 – 17.00)
Venue / Price    : www.purnamaacademy.com 
Registration       : www.purnamaacademy.com  (Save up to 20% for Early Bird Registration !)

Topics include:

Introduction to Hadoop and the Hadoop Ecosystem
·         Problems with Traditional Large-scale Systems
·         Hadoop!
·         The Hadoop EcoSystem
Hadoop Architecture and HDFS
·         Distributed Processing on a Cluster
·         Storage: HDFS Architecture
·         Storage: Using HDFS
·         Resource Management: YARN Architecture
·         Resource Management: Working with YARN
Importing Relational Data with Apache Sqoop
·         Sqoop Overview
·         Basic Imports and Exports
·         Limiting Results
·         Improving Sqoop's Performance
·         Sqoop 2
Introduction to Impala and Hive
·         Introduction to Impala and Hive
·         Why Use Impala and Hive?
·         Comparing Hive to Traditional Databases
·         Hive Use Cases
Modeling and Managing Data with Impala and Hive
·         Data Storage Overview
·         Creating Databases and Tables
·         Loading Data into Tables
·         HCatalog
·         Impala Metadata Caching
Data Formats
·         Selecting a File Format
·         Hadoop Tool Support for File Formats
·         Avro Schemas
·         Using Avro with Hive and Sqoop
·         Avro Schema Evolution
·         Compression
Data Partitioning
·         Partitioning Overview
·         Partitioning in Impala and Hive
Capturing Data with Apache Flume
·         What is Apache Flume?
·         Basic Flume Architecture
·         Flume Sources
·         Flume Sinks
·         Flume Channels
·         Flume Configuration
Spark Basics
·         What is Apache Spark?
·         Using the Spark Shell
·         RDDs (Resilient Distributed Datasets)
·         Functional Programming in Spark
Working with RDDs in Spark
·         A Closer Look at RDDs
·         Key-Value Pair RDDs
·         MapReduce
·         Other Pair RDD Operations
Writing and Deploying Spark Applications
·         Spark Applications vs. Spark Shell
·         Creating the SparkContext
·         Building a Spark Application (Scala and Java)
·         Running a Spark Application
·         The Spark Application Web UI
·         Configuring Spark Properties
·         Logging
Parallel Programming with Spark
·         Review: Spark on a Cluster
·         RDD Partitions
·         Partitioning of File-based RDDs
·         HDFS and Data Locality
·         Executing Parallel Operations
·         Stages and Tasks
Spark Caching and Persistence
·         RDD Lineage
·         Caching Overview
·         Distributed Persistence
Common Patterns in Spark Data Processing
·         Common Spark Use Cases
·         Iterative Algorithms in Spark
·         Graph Processing and Analysis
·         Machine Learning
·         Example: k-means
Preview: Spark SQL
·         Spark SQL and the SQL Context
·         Creating DataFrames
·         Transforming and Querying DataFrames
·         Saving DataFrames
·         Comparing Spark SQL with Impala

Participants :  (Hadoop Developer , Big Data Analyst, IT Developer, DBA  )

Speaker  : Purnama Academy Trainer

#trainingbigdata  #hadoop #sparkhadoop #silabustraining #tempattraining  #pelatihan #jakarta  #bandung  #bali  #surabaya #makasar #jadwaltraining




Comments

Popular posts from this blog

SEO , Top Keyword Research 2015

Google's Hummingbird update created a lot of anxiety, but ultimately, it could be a good thing for the industry, because it frees us from the tyranny of competing for a limited number of top keywords. Essentially, the role of the Hummingbird algorithm is to better answer those longer-tail queries users are typing in Google. If your pages are optimized for these more conversational queries, you have a better chance of top rankings. Try a new, niche-based approach to keywords, which allows you to double or even triple the list of profitable keywords in your SEO arsenal. This article explains the four steps for doing keyword research the modern way, using SEO PowerSuite or other tools. 1. Ideas: Most search marketers simply think of the main keywords related to their businesses, plop them into a tool like Google Keyword Planner, and then run with the keyword list it delivers. However, search habits vary widely: Searchers may use hundreds of different word combinations to describe the ...

Training Search Engine Optimization (SEO) and Internet Marketing

PURNAMAACADEMY.com (0838-0838-0001) info Jadwal silabus : TRAINING SEARCH ENGINE OPTIMIZATION (SEO) AND INTERNET MARKETING (3 HARI), Kegiatan pelatihan/ training akan dilaksanakan selama 3 Hari, dengan pilihan lokasi Jakarta, Bandung , Surabaya, Yogya dan Bali. Purnama Academy Training (0838-0838-0001) merupakan salah satu penyelenggara training IT dan Manajemen terbaik di Bandung Jakarta Surabaya dan Bali serta beberapa kota lainnya, selain topik training diatas Anda juga bisa mengikuti beberapa pelatihan populer kami lainnya seperti Excel VBA Macro, Leadership, BUsiness Analisys , UML, Software Testing, Autocad, Google Map API, Power BI for Business User, ITIL foundation, COBIT 5 Foundation, Yii Framework, Laravel , Microsoft Project, Primavera dan Magento. Kegiatan Training tersedia atas 3 Paket (Full Day : 09.00 - 16.00, Night Class : 16.30 - 21.00, Weekend Class : 09.00 - 21.00). Hubungi tim Purnama Academy untuk informasi lebih detail terkait silabus, waktu pelaksanaan dan biaya...

TRAINING UNITY 3D GAME ADVANCED : WORKING WITH FIREBASE-BANDUNG

TRAINING UNITY 3D GAME ADVANCED : WORKING WITH FIREBASE By Purnama Academy - Training Center January 08, 2018  No comments UNITY 3D GAME ADVANCED : WORKING WITH FIREBASE www.purnamaacademy.com , Hotline (Call/SMS/WA) :  0838-0838-0001 Syllabus Overview Training yang membahas tingkatan lanjut dari pengembangan game 3D menggunakan UNITY 3D baik skala desktop ataupun mobile, dimana peserta mengetahui cara cara menyimpan informasi data game dari player ke dalam backend dengan bantuan firebase SDK, hal ini memungkinkan untuk pengembangan game skala jaringan (online) Class Type : Training Duration : 2 Days (09.00 – 17.00) Venue / Price : Click Here , Registration : Click Here  (Save up to 20% for Early Bird Registration !) Description : Firebase is Google's mobile platform that helps you quickly develop high-quality apps and grow your business A dependable backend is a must-have for today's games. Giving users the ability to log in and save and retrieve player data can make or...